
Unit- 5: Knowledge Representation Artificial Intelligence 

2 Bal Krishna Subedi 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[ Unit-5: Knowledge Representation ] 
 

 

Introduction to Artificial Intelligence (CSC-355) 
 

 

                                           Bal Krishna Subedi 
 



Unit- 5: Knowledge Representation Artificial Intelligence 

3 Bal Krishna Subedi 

 

 

 
 

Knowledge Representation 
 

Knowledge: 
 

Knowledge is a theoretical or practical understanding of a subject or a domain. Knowledge is 

also the sum of what is currently known. 

 
Knowledge is ―the  sum of what is known: the body of truth, information, and principles 

acquired by mankind.‖  Or, "Knowledge is what I know, Information is what we know." 

There are many other definitions such as: 

-  Knowledge  is  "information  combined  with  experience,  context,  interpretation,  and 

reflection. It is a high-value form of information that is ready to apply to decisions and 

actions." (T. Davenport et al., 1998) 

 
- Knowledge is ―human expertise stored in a person‘s mind, gained through experience, and 

interaction with the person‘s environment." (Sunasee and Sewery, 2002) 

 
- Knowledge is ―information evaluated and organized by the human mind so that it can be 

used purposefully, e.g., conclusions or explanations." (Rousa, 2002) 

 
Knowledge consists of information that has been: 

–    interpreted, 

–    categorised, 

–    applied, experienced and revised. 

In general, knowledge is more than just data, it consist of: facts, ideas, beliefs, heuristics, 

associations, rules, abstractions, relationships, customs. 

 
Research literature classifies knowledge as follows: 

 

Classification-based Knowledge » Ability to classify information 

Decision-oriented Knowledge » Choosing the best option 

Descriptive knowledge » State of some world (heuristic) 

Procedural knowledge » How to do something 

Reasoning knowledge » What conclusion is valid in what situation? 

Assimilative knowledge 
 

 

Knowledge Representation 

» What its impact is? 

 

Knowledge representation (KR) is the study of how knowledge about the world can be 

represented and what kinds of reasoning can be done with that knowledge.  Knowledge 

Representation is the method used to encode knowledge in Intelligent Systems.
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Since knowledge is used to achieve intelligent behavior, the fundamental goal of knowledge 

representation is to represent knowledge in a manner as to facilitate inferencing (i.e. drawing 

conclusions) from knowledge. A successful representation of some knowledge must, then, be 

in a form that is understandable by humans, and must cause the system using the knowledge 

to behave as if it knows it. 

 
Some issues that arise in knowledge representation from an AI perspective are: 

 
     How do people represent knowledge? 

     What is the nature of knowledge and how do we represent it? 

  Should a representation scheme deal with a particular domain or should it be general 

purpose? 

     How expressive is a representation scheme or formal language? 

     Should the scheme be declarative or procedural? 

 

 

Fig: Two entities in Knowledge Representaion 

 
For example: English or natural language is an obvious way of representing and handling 

facts. Logic enables us to consider the following fact: spot is a dog as dog(spot) We could 

then infer that all dogs have tails with: : dog(x)    hasatail(x) We can then deduce: 

 
hasatail(Spot) 

 
Using an appropriate backward mapping function the English sentence Spot has a tail can be 

generated. 

 
Properties for Knowledge Representation Systems 

 

The following properties should be possessed by a knowledge representation system. 

 
Representational Adequacy 

-    the ability to represent the required knowledge; 

Inferential Adequacy 
-    the  ability  to  manipulate  the  knowledge  represented  to  produce  new 

knowledge corresponding to that inferred from the original; 

Inferential Efficiency
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- the  ability  to  direct  the  inferential  mechanisms  into  the  most  productive 

directions by storing appropriate guides; 

Acquisitional Efficiency 
-     the ability to  acquire  new knowledge using automatic methods  wherever 

possible rather than reliance on human intervention. 

 
Formal logic-connectives: 

 

In logic, a logical connective (also called a logical operator) is a symbol or word used to 

connect two or more sentences (of either a formal or a natural language) in a grammatically 

valid way, such that the compound sentence produced has a truth value dependent on the 

respective truth values of the original sentences. 

 
Each logical connective can be expressed as a function, called a truth function. For this 

reason, logical connectives are sometimes called truth-functional connectives. 

 
Commonly used logical connectives include: 

 
     Negation (not) (¬ or ~) 

     Conjunction (and) ( , &, or · ) 

     Disjunction (or) (  or ∨ ) 
     Material implication (if...then) (    , or ) 
     Biconditional (if and only if) (iff) (xnor) (    ,    , or = ) 

 
For example, the meaning of the statements it is raining and I am indoors is transformed 

when the two are combined with logical connectives: 

 
     It is raining and I am indoors (P Q) 

     If it is raining, then I am indoors (P     Q) 

     It is raining if I am indoors (Q     P) 

     It is raining if and only if I am indoors (P     Q) 

     It is not raining (¬P) 

 
For statement P = It is raining and Q = I am indoors. 

 
Truth Table: 

 

A proposition in general contains a number of variables. For example (P  Q) contains 

variables P and Q each of which represents an arbitrary proposition. Thus a proposition takes 

different values depending on the values of the constituent variables. This relationship of the 

value of a proposition and those of its constituent variables can be represented by a table. It 

tabulates the value of a proposition for all possible values of its variables and it is called a 

truth table. 
 

For example the following table shows the relationship between the values of P, Q and P Q:



Unit- 5: Knowledge Representation Artificial Intelligence 

6 Bal Krishna Subedi 

 

 

 

 
OR 

P Q (P Q) 

F F F 

F T T 

T F T 

T T T 
 

 

Logic: 
 

Logic is a formal language for representing knowledge such that conclusions can be drawn. 

Logic makes statements about the world which are true (or false) if the state of affairs it 

represents is the case (or not the case). Compared to natural languages (expressive but 

context sensitive) and programming languages (good for concrete data structures but not 

expressive) logic combines the advantages of natural languages and formal languages. Logic 

is concise, unambiguous, expressive, context insensitive, effective for inferences. 

 
It has syntax, semantics, and proof theory. 

 
Syntax: Describe possible configurations that constitute sentences. 

 
Semantics: Determines what fact in the world, the sentence refers to i.e. the interpretation. 

Each sentence make claim about the world (meaning of sentence).Semantic property include 

truth and falsity. 

 
Syntax is concerned with the rules used for constructing, or transforming the symbols and 

words of a language, as contrasted with the semantics of a language which is concerned with 

its meaning. 

 
Proof theory (Inference method):   set of rules for generating new sentences that are 

necessarily true given that the old sentences are true. 

 
We will consider two kinds of logic: propositional logic and first-order logic or more 

precisely first-order predicate calculus. Propositional logic is of limited expressiveness but 

is useful to introduce many of the concepts of logic's syntax, semantics and inference 

procedures. 

 
Entailment: 

 

Entailment means that one thing follows from another: 

KB |= α 

 
Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true 

 
E.g., x + y =4 entails 4=x + y
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Entailment is a relationship between sentences (i.e., syntax) that is based on semantics. 

 
We can determine whether S |= P by finding Truth Table for S and P, if any row of Truth 

Table where all formulae in S is true. 
 
 

 

Example:                                        
 

Therefore {P, P→Q} |= Q. Here, only row where both P and P→Q are True, Q is also True. 

Here, S= (P, P→Q} and P= {Q}. 
 

 
 

Models 

 
Logicians  typically  think  in  terms  of  models,  in  place  of  ―possible  world‖,  which  are 

formally structured worlds with respect to which truth can be evaluated. 

m is a model of a sentence  if  is true in m. 

M() is the set of all models of . 
 

 
 

Tautology: 
 

A formula of propositional logic is a tautology if the formula itself is always true regardless 
of which valuation is used for the propositional variables. 

 
There are infinitely many tautologies. Examples include: 

 

  ("A or not A"), the law of the excluded middle. This formula has only one 

propositional variable, A. Any valuation for this formula must, by definition, assign A 

one of the truth values true or false, and assign    A the other truth value. 

  ("if A implies B then not-B implies not-A", and vice 

versa), which expresses the law of contraposition. 

    ("if A implies B and B implies C, then 
A implies C"), which is the principle known as syllogism. 

 
The definition of tautology can be extended to sentences in predicate logic, which may 

contain quantifiers, unlike sentences of propositional logic. In propositional logic, there is no 

distinction between a tautology and a logically valid formula. In the context of predicate 

logic, many authors define a tautology to be a sentence that can be obtained by taking a 

tautology of propositional logic and uniformly replacing each propositional variable by a
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first-order formula (one formula per propositional variable). The set of such formulas is a 

proper  subset  of  the  set  of  logically  valid  sentences  of  predicate  logic  (which  are  the 

sentences that are true in every model). 

 
There are also propositions that are always false such as (P  P). Such a proposition is 

called a contradiction. 

 
A  proposition  that  is  neither  a  tautology  nor  a  contradiction  is  called  a  contingency. 

For example (P Q) is a contingency. 

 
Validity: 

 

The term validity in logic (also logical validity) is largely synonymous with logical truth, 

however the term is used in different contexts. Validity is a property of formulae, statements 

and arguments. A logically valid argument is one where the conclusion follows from the 

premises. An invalid argument is where the conclusion does not follow from the 

premises. A formula of a formal language is a valid formula if and only if it is true under 

every possible interpretation of the language. 

 
Saying that an argument is valid is equivalent to saying that it is logically impossible that the 

premises of the argument are true and the conclusion false. A less precise but intuitively clear 

way of putting this is to say that in a valid argument IF the premises are true, then the 

conclusion must be true. 

 
An argument that is not valid is said to be ―invalid‖. 

An example of a valid argument is given by the following well-known syllogism: 

All men are mortal. 

Socrates is a man. 

Therefore, Socrates is mortal. 

 
What makes this a valid argument is not that it has true premises and a true conclusion, but 

the logical necessity of the conclusion, given the two premises. 

 
The following argument is of the same logical form but with false premises and a false 

conclusion, and it is equally valid: 

 
All women are cats. 

All cats are men. 

Therefore, all women are men. 

 
This argument has false premises and a false conclusion. This brings out the hypothetical 

character of validity. What the validity of these arguments amounts to, is that it assures us the 

conclusion must be true IF the premises are true.
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Thus,  an  argument  is  valid  if  the  premises  and  conclusion  follow  a  logical  form. 

This essentially means that the conclusion logically follows from the premises. An argument 

is valid if and only if the truth of its premises entails the truth of its conclusion. It would be 

self-contradictory to affirm the premises and deny the conclusion 

 
Deductive Reasoning: 

 

Deductive  reasoning,  also  called  Deductive  logic,  is  reasoning  which  constructs  or 

evaluates deductive arguments. Deductive arguments are attempts to show that a conclusion 

necessarily follows from a set of premises. A deductive argument is valid if the conclusion 

does follow necessarily from the premises, i.e., if the conclusion must be true provided 

that the premises are true. A deductive argument is sound if it is valid AND its premises 

are true. Deductive arguments are valid or invalid, sound or unsound, but are never false or 

true. 

 
An example of a deductive argument: 

 
1.   All men are mortal 

2.   Socrates is a man 

3.   Therefore, Socrates is mortal 

 
The first premise states that all objects classified as 'men' have the attribute 'mortal'. The 

second premise states that 'Socrates' is classified as a man- a member of the set 'men'. The 

conclusion states that 'Socrates' must be mortal because he inherits this attribute from his 

classification as a man. 

 
Deductive arguments are generally evaluated in terms of their validity and soundness. An 

argument is valid if it is impossible both for its premises to be true and its conclusion to be 

false. An argument can be valid even though the premises are false. 

 
This is an example of a valid argument. The first premise is false, yet the conclusion is still 

valid. 

 
All fire-breathing rabbits live on Mars 

All humans are fire-breathing rabbits 

Therefore, all humans live on Mars 

 
This argument is valid but not sound In order for a deductive argument to be sound, the 

deduction must be valid and the premise must all be true. 

 
Let‘s take one of the above examples. 

 
1.   All monkeys are primates 

2.   All primates are mammals 

3.   All monkeys are mammals
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This is a sound argument because it is actually true in the real world. The premises are true 

and so is the conclusion. They logically follow from one another to form a concrete argument 

that can‘t be denied. Where validity doesn‘t have to do with the actual truthfulness of an 

argument, soundness does. 

 
A theory of deductive reasoning known as categorical or  term logic  was developed by 

Aristotle, but was superseded by propositional (sentential) logic and predicate logic. 

 
Deductive reasoning can be contrasted with inductive reasoning. In cases of inductive 

reasoning, it is possible for the conclusion to be false even though the premises are true and 

the argument's form is cogent. 

 
Well Formed Formula: (wff) 

 

It is a syntactic object that can be given a semantic meaning. A formal language can be 

considered to be identical to the set containing all and only its wffs. 

 
A key use of wffs is in propositional logic and predicate logics such as first-order logic. In 

those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", 

once any free variables in φ have been instantiated. In formal logic, proofs can be represented 

by sequences of wffs with certain properties, and the final wff in the sequence is what is 

proven. 

 
The   well-formed   formulas   of   propositional   calculus    are   expressions   such   as 

Their definition begins with the arbitrary choice of a set V of propositional 

variables.  The  alphabet  consists  of  the  letters  in  V  along  with  the  symbols  for  the 

propositional connectives and parentheses "(" and ")", all of which are assumed to not be in 

V. The wffs will be certain expressions (that is, strings of symbols) over this alphabet. 

 
The well-formed formulas are inductively defined as follows: 

 
     Each propositional variable is, on its own, a wff. 

     If φ is a wff, then    φ is a wff. 

     If φ and ψ are wffs, and • is any binary connective, then ( φ • ψ) is a wff. Here • could 

be ∨, ∧, →, or ↔.

 
The WFF for predicate calculus is defined to be the smallest set containing the set of atomic 
WFFs such that the following holds: 

 

 

1.        is a WFF when    is a WFF 

2.                 and               are WFFs when and are WFFs; 

3.            is a WFF when x is a variable and is a WFF; 

4.  is a WFF when   is a variable and is a WFF (alternatively, could be 

defined as an abbreviation for ).
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If a formula has no occurrences of or , for any variable   , then it is called quantifier- 

free. An existential formula is a string of existential quantification followed by a quantifier- 

free formula. 

 
Propositional Logic: 

 

Propositional logic represents knowledge/ information in terms of propositions. Prepositions 

are facts and non-facts that can be true or false. Propositions are expressed using ordinary 

declarative sentences. Propositional logic is the simplest logic. 

 
Syntax: 

 

The syntax of propositional logic defines the allowable sentences. The atomic sentences- the 

indivisible syntactic elements- consist of single proposition symbol. Each such symbol stands 

for a proposition that can be true or false. We use the symbols like P1, P2 to represent 

sentences. 

 
The complex sentences are constructed from simpler sentences using logical connectives. 

There are five connectives in common use: 

 (negation), ^ (conjunction),  (disjunction),  (implication),  (biconditional) 

The order of precedence in propositional logic is from (highest to lowest):  , ^ , , ,  . 

Propositional logic is defined as: 

If S is a sentence, S is a sentence (negation) 
If S1 and S2 are sentences, S1 ^ S2 is a sentence (conjunction) 

If S1 and S2 are sentences, S1  S2 is a sentence (disjunction) 

If S1 and S2 are sentences, S1  S2 is a sentence (implication) 

If S1 and S2 are sentences, S1  S2 is a sentence (biconditional) 
 

Formal grammar for propositional logic can be given as below: 

Sentence                      AutomicSentence | ComplexSentence 

AutomicSentence        True | False | Symbol 

Symbol                        P | Q | R ………… 

ComplexSentence       Sentence 
| (Sentence ^ Sentence) 

| (Sentence  Sentence) 

| (Sentence  Sentence) 

| (Sentence  Sentence) 

 
Semantics: 

 

Each model specifies true/false for each proposition symbol
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Rules for evaluating truth with respect to a model: 

S is true if, S is false 
S1 ^ S2 is true if, S1 is true and S2 is true 

S1  S2 is true if, S1 is true or S2 is true 

S1  S2 is true if, S1 is false or S2 is true 

S1  S2 is true if, S1  S2 is true and S2  S1 is true 

 
Truth Table showing the evaluation of semantics of complex sentences: 

 
P Q P PQ PQ PQ PQ 

false false true false false true true 

false true true false true true false 

true false false false true false false 

true true false true true true true 
 

Logical equivalence: 
 

Two sentences   and ß are logically equivalent (  ß)  iff true they are true inn same set of 

models  or Two sentences  and ß are logically equivalent (  ß) iff  |= ß and ß |= . 

 

 
 
Validity: 

 

A sentence is valid if it is true in all models, 

 
e.g., True, AA, A  A, (A  (A  B))  B 

 
Valid sentences are also known as tautologies. Every valid sentence is logically equivalent to 

True 

 
Satisfiability:
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A sentence is satisfiable if it is true in some model 

–  e.g., A  B, C 

 
A sentence is unsatisfiable if it is true in no models 

–  e.g., AA 

 
Validity and satisfiablity are related concepts 

–     is valid iff  is unsatisfiable 

–     is satisfiable iff  is not valid 

 
Satisfiability is connected to inference via the following: 

–  KB |=  if and only if (KB   ) is unsatisfiable 
 

 
 

Inference rules in Propositional Logic 
 

Modus Ponens 
 

 

 
 

And-elimination 
 

 

 
 
Monotonicity: the set of entailed sentences can only increase as information is added to the 

knowledge base. 

 
For any sentence  and  if KB |=  then KB   |=  . 

 
Resolution 

 

Unit resolution rule: 
 

Unit resolution rule takes a clause – a disjunction of literals – and a literal  and produces a 

new clause. Single literal is also called unit clause. 
 

 
 

 

Where li and m are complementary literals 

 
Generalized resolution rule:
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Generalized resolution rule takes two clauses of any length and produces a new clause as 

below. 

 
 

For example: 
 
 
 
 
 

Resolution Uses CNF (Conjunctive normal form) 

–  Conjunction of disjunctions of literals (clauses) 
 
The resolution rule is sound: 

–  Only entailed sentences are derived 
Resolution is complete in the sense that it can always be used to either confirm or refute a 
sentence (it can not be used to enumerate true sentences.) 

 
Conversion to CNF: 

 

A sentence that is expressed as a conjunction of disjunctions of literals is said to be in 

conjunctive normal form (CNF). A sentence in CNF that contains only k literals per clause is 

said to be in k-CNF. 

 
Algorithm: 

 

Eliminate ↔rewriting P↔Q as (P→Q)∧(Q→P) 

Eliminate →rewriting P→Q as ￢P∨Q 

Use De Morgan‘s laws to push ￢ inwards: 

- rewrite ￢(P∧Q) as ￢P∨￢Q 

- rewrite ￢(P∨Q) as ￢P∧￢Q 

Eliminate double negations: rewrite ￢￢P as P 

Use the distributive laws to get CNF: 

- rewrite (P∧Q)∨R as (P∨R)∧(Q∨R) 

Flatten nested clauses: 

- (P∧Q) ∧ R as P∧Q ∧ R 

- (P∨Q)∨R as P∨Q∨R 
 
 

Example: Let‘s illustrate the conversion to CNF by using an example. 

 
B  (A  C)
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•  Eliminate , replacing   ß with (  ß)(ß  ). 

–    (B  (A  C))  ((A  C)  B) 
 

    Eliminate , replacing   ß with    ß. 

–  (B  A  C)  ((A  C)  B) 

 
    Move  inwards using de Morgan's rules and double-negation: 

–  (B  A  C)  ((A  C)  B) 

 
    Apply distributivity law ( over ) and flatten: 

–  (B  A  C)  (A  B)  (C  B) 

 
Resolution algorithm 

 

–  Convert KB into CNF 
 

–  Add negation of sentence to be entailed into KB i.e. (KB  ) 
 

–  Then apply resolution rule to resulting clauses. 
 

–  The process continues until: 
 

–  There are no new clauses that can be added 

Hence KB does not entail 

–  Two clauses resolve to entail the empty clause. 

Hence KB does entail 

 
Example: Consider the knowledge base given as: KB = (B  (A C))  B 

Prove that A can be inferred from above KB by using resolution. 

Solution: 
 

 

At first, convert KB into CNF 
 

B  (A  C))  ((A  C)  B)  B 

(B  A  C)  ((A  C)  B)  B 

(B  A  C)  ((A  C)  B)  B 

(B  A  C)  (A  B)  (C  B)  B
 

Add negation of sentence to be inferred from KB into KB 

 
Now KB contains following sentences all in CNF 

(B  A  C) 

(A  B) 

(C  B) 

 B 
A (negation of conclusion to be proved)
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Now use Resolution algorithm 

 

(B  A  C)          (A  B)           (C  B)              B                           A 
 

 
 
 
 
 

(BCB)        (ACA)        (BAB)        (ACC)        A 
 
 
 
 
 
 
 
 
 
 
 

Resolution: More Examples 
 

1. KB= {(G∨H)→(￢J ∧￢K), G}. Show that KB ⊢ ￢J 

Solution: 

Clausal form of (G∨H)→(￢J ∧￢K) is 

{￢G∨￢J, ￢H ∨￢J, ￢G∨￢K, ￢H ∨￢K} 

1. ￢G∨￢J [Premise] 

2. ￢H ∨￢J [Premise] 

3. ￢G∨￢K [Premise] 

4. ￢H ∨￢K [Premise] 

5. G [Premise] 

6. J [￢ Conclusion] 

7. ￢G [1, 6 Resolution] 

8. _ [5, 7 Resolution] 

Hence KB entails ￢J 

2. KB= {P→￢Q, ￢Q→R}. Show that KB ⊢ P→R 

Solution: 

1. ￢P∨￢Q [Premise] 

2. Q∨R [Premise] 

3. P [￢ Conclusion]
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4. ￢R [￢ Conclusion] 

5. ￢Q [1, 3 Resolution] 

6. R [2, 5 Resolution] 
7. _ [4, 6 Resolution] 

Hence, KB ⊢ P→R 

3. ⊢ ((P∨Q)∧￢P)→Q 

Clausal form of ￢(((P∨Q)∧￢P)→Q) is {P∨Q, ￢P, ￢Q} 

1. P∨Q [￢ Conclusion] 

2. ￢P [￢ Conclusion] 

3. ￢Q [￢ Conclusion] 

4. Q [1, 2 Resolution] 
5. _ [3, 4 Resolution]
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Forward and backward chaining 
 

The completeness of resolution makes it a very important inference model. But in many 

practical situations full power of resolution is not needed. Real-world knowledge bases often 

contain only clauses of restricted kind called Horn Clause. A Horn clauses is disjunction of 

literals with at most one positive literal 

Three important properties of Horn clause are: 

  Can be written as an implication 

  Inference through forward chaining and backward chaining. 

  Deciding entailment can be done in a time linear size of the knowledge base. 
 

 
 

Forward chaining: 
 

Idea: fire any rule whose premises are satisfied in the KB, 

–  add its conclusion to the KB, until query is found 
 
 
 
 
 
 
 
 
 
 
 
 

 
Prove that Q can be inferred from above KB 

Solution:
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Backward chaining: 
 

Idea: work backwards from the query q: to prove q by BC, 

Check if q is known already, or 

Prove by BC all premises of some rule concluding q 

For example, for above KB (as in forward chaining above) 

P  Q 

L  M  P 

B  L  M 

A  P  L 

A  B  L 

A 

B 

Prove that Q can be inferred from above KB 

Solution: 

We know P  Q, try to prove P 

L  M  P 
Try to prove L and M 

B  L  M 

A  P  L 
Try to prove B, L and A and P 

A and B is already known, since A  B  L, L is also known 

Since, B  L  M, M is also known 

Since, L  M  P, p is known, hence the proved.
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First-Order Logic 
 

Pros and cons of propositional logic 
-    Propositional logic is declarative 
-    Propositional logic allows partial/disjunctive/negated information 

o (unlike most data structures and databases) 
-    Propositional logic is compositional: 

o meaning of B  P is derived from meaning of B and of P 
-    Meaning in propositional logic is context-independent 

o (unlike natural language, where meaning depends on context) 
-    Propositional logic has very limited expressive power 

o (unlike natural language) 

 
Propositional logic assumes the world contains facts, whereas first-order logic (like natural 

language) assumes the world contains: 

–  Objects: people, houses, numbers, colors, baseball games, wars, … 

–  Relations: red, round, prime, brother of, bigger than, part of, comes 
between,… 

–  Functions: father of, best friend, one more than, plus, … 

 
Logics in General 

 
The primary difference between PL and FOPL is their ontological commitment: 

Ontological Commitment: What exists in the world — TRUTH 

–  PL: facts hold or do not hold. 

–  FL : objects with relations between them that hold or do not hold 
Another difference is: 

Epistemological Commitment: What an agent believes about facts — BELIEF 
 

 



Unit- 5: Knowledge Representation Artificial Intelligence 

20 Bal Krishna Subedi 

 

 

 

 
 
 

FOPL: Syntax 
 

 
 

Representing knowledge in first-order logic 
 

The objects from the real world are represented by constant symbols (a,b,c,...). For instance, 

the symbol ―Tom‖ may represent a certain individual called Tom. 

 
Properties of objects may be represented by predicates applied to those objects (P(a), ...): e.g 

"male(Tom)" represents that Tom is a male. 

 
Relationships between objects are represented by predicates with more arguments: 

"father(Tom, Bob)" represents the fact that Tom is the father of Bob. 

 
The value of a predicate is one of the boolean constants T (i.e. true) or F (i.e. 

false)."father(Tom, Bob) = T"  means that the sentence "Tom is the father of Bob" is true. 

"father(Tom, Bob) = F"  means that the sentence "Tom is the father of Bob" is false. 

 
Besides constants, the arguments of the predicates may be functions (f,g,...) or variables 

(x,y,...). 

 
Function symbols denote mappings from elements of a domain (or tuples of elements of 

domains) to elements of a domain. For instance, weight is a function that maps objects to
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their weight: weight (Tom) = 150.Therefore the predicate greater-than (weight (Bob), 100) 

means  that  the  weight  of  Bob  is  greater  than  100.  The  arguments  of  a  function  may 

themselves be functions. 

 
Variable symbols represent potentially any element of a domain and allow the formulation of 

general statements about the elements of the domain. 

 
The quantifier‘s  and  are used to build new formulas from old ones. 

"x P(x)" expresses that there is at least one element of the domain that makes P(x) true. 

"x mother(x, Bob)‖ means that there is x such that x is mother of Bob or, otherwise stated, 
Bob has a mother.     

"x P(x)" expresses that for all elements of the domain P(x) is true. 

 
Quantifiers 

 

Allows us to express properties of collections of objects instead of enumerating objects by 

name. Two quantifiers are: 

Universal: ―for all‖ 

Existential: ―there exists‖ 

 
Universal quantification: 

 
<Variables> <sentence> 

 
Eg: Everyone at UAB is smart: 

x At(x,UAB)  Smart(x) 

 
x P is true in a model m iff P is true for all x in the model 

 
Roughly speaking, equivalent to the conjunction of instantiations of P 

 
At(KingJohn,UAB)  Smart(KingJohn)    At(Richard,UAB) 

Smart(Richard)At(UAB,UAB)  Smart(UAB) ... 

 
Typically,  is the main connective with 

– A universally quantifier is also equivalent to a set of implications over all 
objects 

Common mistake: using  as the main connective with : 

x At(x, UAB)  Smart(x) 
Means ―Everyone is at UAB and everyone is smart‖ 

 
Existential quantification 

 
<variables> <sentence> 
Someone at UAB is smart:
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x At(x, UAB)  Smart(x) 

 
x P is true in a model m iff P is true for at least one x in the model 

 
Roughly speaking, equivalent to the disjunction of instantiations of P 

 
At(KingJohn,UAB)  Smart(KingJohn)At(Richard,UAB)  Smart(Richard) 

At(UAB, UAB)  Smart(UAB)  ... 

Typically,  is the main connective with 

Common mistake: using  as the main connective with : 

x At(x, UAB)  Smart(x) is true even if there is anyone who is not at UAB! 

 
FOPL: Semantic 

 

An interpretation is required to give semantics to first-order logic. The interpretation is a 

non-empty ―domain of discourse‖ (set of objects). The truth of any formula depends on the 

interpretation. 

 
The interpretation provides, for each: 

constant symbol an object in the domain 

function symbols a function from domain tuples to the domain 

predicate symbol a relation over the domain (a set of tuples) 

 
Then we define: 

universal quantifier ∀xP(x) is True iff P(a) is True for all assignments of domain 

elements a to x 

existential quantifier ∃xP(x) is True iff P(a) is True for at least one assignment of 

domain element a to x 

 
FOPL: Inference (Inference in first-order logic) 

 

First order inference can be done by converting the knowledge base to PL and using 

propositional inference. 

–  How to convert universal quantifiers? 

–  Replace variable by ground term. 

–  How to convert existential quantifiers? 

–  Skolemization. 

 
Universal instantiation (UI) 

 
Substitute ground term (term without variables) for the variables. 

For example consider the following KB
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 x King (x)  Greedy (x)  Evil(x) 
King (John) 
Greedy (John) 
Brother (Richard, John) 

It‘s UI is: 

King (John)  Greedy (John)  Evil(John) 

King (Richard)  Greedy (Richard)  Evil(Richard) 
King (John) 
Greedy (John) 
Brother (Richard, John) 

Note: Remove universally quantified sentences after universal instantiation. 

 
Existential instantiation (EI) 

 
For any sentence  and variable v in that, introduce a constant that is not in the KB (called 
skolem constant) and substitute that constant for v. 

E.g.: Consider the sentence,  x Crown(x)  OnHead(x, John) 

After EI, 

Crown(C1)  OnHead(C1, John)       where C1 is Skolem Constant. 
 

 
 

Towards Resolution for FOPL: 
 

-    Based on resolution for propositional logic 

-    Extended syntax: allow variables and quantifiers 

-    Define ―clausal form‖ for first-order logic formulae (CNF) 

-    Eliminate quantifiers from clausal forms 

-    Adapt resolution procedure to cope with variables (unification) 

 
Conversion to CNF: 

 

1. Eliminate implications and bi-implications as in propositional case 

2. Move negations inward using De Morgan‘s laws 

plus rewriting ￢∀xP as ∃x￢P and ￢∃xP as ∀x￢P 

3. Eliminate double negations 

4. Rename bound variables if necessary so each only occurs once 

e.g. ∀xP(x)∨∃xQ(x) becomes ∀xP(x)∨∃yQ(y) 

5. Use equivalences to move quantifiers to the left 

e.g. ∀xP(x)∧Q becomes ∀x (P(x)∧Q) where x is not in Q 

e.g. ∀xP(x)∧∃yQ(y) becomes ∀x∃y(P(x)∧Q(y)) 

6. Skolemise (replace each existentially quantified variable by a new term) 

∃xP(x) becomes P(a0) using a Skolem constant a0 since ∃x occurs at the outermost level
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∀x∃yP(x, y) becomes P(x, f0(x)) using a Skolem function f0 since ∃y occurs within ∀x 

7. The formula now has only universal quantifiers and all are at the left of the formula: drop them 

8. Use distribution laws to get CNF and then clausal form 
 

 
 

Example: 
 

 

1.) ∀x [∀yP(x, y)→￢∀y(Q(x, y)→R(x, y))] 

 
Solution: 

1. ∀x [￢∀yP(x, y)∨￢∀y(￢Q(x, y)∨R(x, y))] 

2, 3. ∀x [∃y￢P(x, y)∨∃y(Q(x, y)∧￢R(x, y))] 

4. ∀x [∃y￢P(x, y)∨∃z (Q(x, z)∧￢R(x, z))] 

5. ∀x∃y∃z [￢P(x, y)∨(Q(x, z)∧￢R(x, z))] 

6. ∀x [￢P(x, f (x))∨(Q(x, g(x))∧￢R(x, g(x)))] 

7. ￢P(x, f (x))∨(Q(x, g(x))∧￢R(x, g(x))) 

8. (￢P(x, f (x))∨Q(x, g(x)))∧(￢P(x, f (x))∨￢R(x, g(x))) 

8. {￢P(x, f (x))∨Q(x, g(x)), ￢P(x, f (x))∨￢R(x, g(x))} 

 

2.) ￢∃x∀y∀z ((P(y)∨Q(z))→(P(x)∨Q(x))) 

 
Solution: 

1. ￢∃x∀y∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x￢∀y∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x∃y￢∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x∃y∃z￢(￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x∃y∃z ((P(y)∨Q(z))∧￢(P(x)∨Q(x))) 

6. ∀x ((P( f (x))∨Q(g(x)))∧￢P(x)∧￢Q(x)) 

7. (P( f (x))∨Q(g(x))∧￢P(x)∧￢Q(x) 

8. {P( f (x))∨Q(g(x)), ￢P(x), ￢Q(x)}
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Unification: 
 

A unifier of two atomic formulae is a substitution of terms for variables that makes them 

identical. 

- Each variable has at most one associated term 

- Substitutions are applied simultaneously 

Unifier of P(x, f (a), z) and P(z, z, u) : {x/ f (a), z/ f (a), u/ f (a)} 

 
We can get the inference immediately if we can find a substitution  such that King(x) and 
Greedy(x) match King(John) and Greedy(y) 

 
 = {x/John,y/John} works 

 
Unify( ,) =  if  = 

 
p                                  q                                    

Knows(John,x)           Knows(John,Jane)       {x/Jane} 

Knows(John,x)           Knows(y,OJ)              {x/OJ,y/John} 

Knows(John,x)           Knows(y,Mother(y))  {y/John,x/Mother(John)}} 

Knows(John,x)           Knows(x,OJ)               {fail} 

 
Last unification is failed due to overlap of variables. x can not take the values of John and OJ 

at the same time. 

 
We can avoid this problem by renaming to avoid the name clashes (standardizing 

apart) 

E.g. 

Unify{Knows(John,x)                      Knows(z,OJ) } = {x/OJ, z/John} 

 
Let C1 and C2 be two clauses. If C1 and C2 have no variables in common, then they are said 

to be standardized apart. Standardized apart eliminates overlap of variables to avoid clashes 

by renaming variables. 

 
Another complication: 

 
To unify Knows(John,x) and Knows(y,z), 

Unification of Knows(John,x) and Knows(y,z) gives  ={y/John, x/z } or ={y/John, x/John, 
z/John} 

 
First unifier gives the result Knows(John,z) and second unifier gives the resultKnows(John, 

John). Second can be achieved from first by substituting john in place of z. The first unifier is 

more general than the second. 

 
There is a single most general unifier (MGU) that is unique up to renaming of variables. 

MGU = { y/John, x/z }



Unit- 5: Knowledge Representation Artificial Intelligence 

26 Bal Krishna Subedi 

 

 

 
 

Towards Resolution for First-Order Logic 
 

    Based on resolution for propositional logic 

    Extended syntax: allow variables and quantifiers 

    Define ―clausal form‖ for first-order logic formulae 

    Eliminate quantifiers from clausal forms 

    Adapt resolution procedure to cope with variables (unification) 
 

 
 

First-Order Resolution 

 
For clauses P∨Q and ￢Q′ ∨R with Q,Q′ atomic formulae 

P∨Q                      ￢Q′ ∨R 
 

 
 
 
 
 

(P∨R)

 

where is a most general unifier for Q and Q′ 

(P∨R)is the resolvent of the two clauses 
 

 
 

Applying Resolution Refutation 
 

    Negate query to be proven (resolution is a refutation system) 

    Convert knowledge base and negated query into CNF and extract clauses 

 Repeatedly apply resolution to clauses or copies of clauses until either the empty 

clause (contradiction) is derived or no more clauses can be derived (a copy of a clause 

is the clause with all variables renamed) 

 If the empty clause is derived, answer ‗yes‘  (query follows from knowledge base), 
otherwise answer ‗no‘ (query does not follow from knowledge base) 

 
Resolution: Examples 

 
1.) ⊢ ∃x (P(x)→∀xP(x)) 

 
Solution: 

Add negation of the conclusion and convert the predicate in to CNF: 

(￢∃x(P(x)→∀xP(x))) 

1, 2. ∀x￢(￢P(x)∨∀xP(x)) 

2. ∀x (￢￢P(x)∧￢∀xP(x)) 

2, 3. ∀x (P(x)∧∃x￢P(x))
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4. ∀x (P(x)∧∃y ￢P(y)) 

5. ∀x∃y(P(x)∧￢P(y)) 

6. ∀x (P(x)∧￢P( f (x))) 

8. P(x), ￢P( f (x)) 

 
Now, we can use resolution as; 

1. P(x) [￢ Conclusion] 

2. ￢P( f (y)) [Copy of ￢ Conclusion] 

3. _ [1, 2 Resolution {x/ f (y)}] 
 

 
 

2.) ⊢ ∃x∀y∀z ((P(y)∨Q(z))→(P(x)∨Q(x))) 

Solution: 

1. P( f (x))∨Q(g(x)) [￢ Conclusion] 

2. ￢P(x) [￢ Conclusion] 

3. ￢Q(x) [￢ Conclusion] 

4. ￢P(y) [Copy of 2] 

5. Q(g(x)) [1, 4 Resolution {y/ f (x)}] 

6. ￢Q(z) [Copy of 3] 

7. _ [5, 6 Resolution {z/g(x)}]
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3.) 
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Q.) Anyone passing his history exams and winning the lottery is happy. But anyone who 

studies or is lucky can pass all his exams. John did not study but John is lucky. Anyone who 

is lucky wins the lottery. Is John happy? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now, Convert the KB to CNF:
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Now, the KB contains: 

 

 
 
 
 
 
 
 
 
 

Standardize the variables apart: 
 
 
 
 
 
 
 
 

 

5.                                 (Negation of the conclusion added) 

Now Use resolution as below:
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Empty
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Symbolic versus statistical reasoning: 
 
The (Symbolic) methods basically represent uncertainty belief as being 

 
     True, 

     False, or 

     Neither True nor False. 

 
Some methods also had problems with 

 
     Incomplete Knowledge 

     Contradictions in the knowledge. 

 
Statistical  methods  provide  a  method  for  representing  beliefs  that  are  not  certain  (or 

uncertain) but for which there may be some supporting (or contradictory) evidence. 

 
Statistical methods offer advantages in two broad scenarios: 

 
Genuine Randomness 

-- Card games are a good example. We may not be able to predict any outcomes with 
certainty but we have knowledge about the likelihood of certain items (e.g. like being 

dealt an ace) and we can exploit this. 

Exceptions 
-- Symbolic methods can represent this. However if the number of exceptions is large 
such system tend to break down. Many common sense and expert reasoning tasks for 

example. Statistical techniques can summarise large exceptions without resorting 

enumeration. 
 

Basic Statistical methods – Probability: 
 
The basic approach statistical methods adopt to deal with uncertainty is via the axioms of 
probability: 

 
     Probabilities are (real) numbers in the range 0 to 1. 

  A probability of P(A) = 0 indicates total uncertainty in A, P(A) = 1 total certainty and 

values in between some degree of (un)certainty. 

     Probabilities can be calculated in a number of ways. 

 
Very Simply 

 
Probability = (number of desired outcomes) / (total number of outcomes) 

 
So given a pack of playing cards the probability of being dealt an ace from a full 

normal deck is 4 (the number of aces) / 52 (number of cards in deck) which is 1/13. 

Similarly the probability of being dealt a spade suit is 13 / 52 = 1/4.
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Conditional probability, P(A|B), indicates the probability of of event A given that we know 

event B has occurred. 

 
The aim of a probabilistic logic (or probability logic) is to combine the capacity of 

probability theory to  handle uncertainty with  the capacity of  deductive logic  to  exploit 

structure. The result is a richer and more expressive formalism with a broad range of possible 

application areas. Probabilistic logic is a natural extension of traditional logic truth tables: the 

results they define are derived through probabilistic expressions instead. The difficulty with 

probabilistic logics is that they tend to multiply the computational complexities of their 

probabilistic and logical components. 

 
Random Variables: 

 
In probability theory and statistics, a random variable (or stochastic variable) is a way of 

assigning a value (often a real number) to each possible outcome of a random event. These 

values might represent the possible outcomes of an experiment, or the potential values of a 

quantity whose value is uncertain (e.g., as a result of incomplete information or imprecise 

measurements.) Intuitively, a random variable can be thought of as a quantity whose value is 

not fixed, but which can take on different values; normally, a probability distribution is used 

to describe the probability of different values occurring. Random variables are usually real- 

valued, but one can consider arbitrary types such as  boolean values, complex numbers, 

vectors, matrices, sequences, trees, sets, shapes, manifolds and functions. The term random 

element is used to encompass all such related concepts. 

 
For example: There are two possible outcomes for a coin toss: heads, or tails. The possible 

outcomes for one fair coin toss can be described using the following random variable: 

 

 
 
and if the coin is equally likely to land on either side then it has a probability mass function 
given by: 

 

 
 

 
 

Example: A simple world consisting of two random variables: 

Cavity– a Boolean variable that refers to whether my lower left wisdom tooth has a cavity 

Toothache- a Boolean variable that refers to whether I have a toothache or not. 

 
We use the single capital letters to represent unknown random variables 

P induces a probability distribution for any random variables X.
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Each RV has a domain of values that it can take it, e. g. domain of Cavity is {true, false} 

 
RVs domain are: Boolean, Discrete and Continuous 

 

Atomic Event: 
 

 
 

An atomic eventis a complete specification of the state of the world about which the agent is 

uncertain. 

 
Example: 
In the above world with two random variables (Cavity and Toothache) there are only four 
distinct atomic events, one being: 

Cavity = false, Toothache = true 

Which are the other three atomic events? 

 
Propositions: 

 

 
 

Think of a proposition as the event (set of sample points) where the proposition is true 

 
Given Boolean random variables A and B: 

 
event α = set of sample points where A(ω) = true event 

¬α = set of sample points where A(ω) = false event a ^ 

b = points where A(ω) = true and B(ω) = true 

 
Often in AI applications, the sample points are defined by the values of a set of random 

variables, i.e., the sample space is the Cartesian product of the ranges of the variables. 

 
With Boolean variables, sample point = propositional logic model 

e.g., A = true, B = false, or a ^ ¬b. 

 
Proposition = disjunction of atomic events in which it is true 

e.g., (a ∨ b)  ≡ (¬a ^ b) ∨(a ^ ¬b) ∨(a ^ b)
 

P(a ∨ b) = P(¬a^ b) + P(a^ ¬b) + P(a^ b)

 
Propositional or Boolean random variables 

e.g., Cavity(do I have a cavity?) 

Discrete random variables (finite or infinite) 

e.g., Weather is one of (sunny, rain, cloudy, snow) 

Weather = rain is a proposition 

 
Values must be exhaustive and mutually exclusive 

Continuous random variables (bounded or unbounded) 

e.g., Temp = 21.6, also allow, e.g., Temp < 22.0.
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Prior Probability: 
 
The prior or unconditional probability associated with a proposition is the degree of belief 

accorded to it in the absence of any other information. 

 
Example: 
P(Weather= sunny) = 0.72,  P(Weather= rain) = 0.1, P(Weather= cloudy) = 0.08, 
P(Weather= snow) = 0.1 

 
Probability distribution gives values for all possible assignments: 

P(Weather) = (0.72, 0.1, 0.08, 0.1) 

 
Joint probability distribution for a set of  r.v.s gives the probability of every atomic event 

on those r.v.s (i.e., every sample point) 

 
P(Weather, Cavity) = a 4 ×2 matrix of values. 

 
 
Every question about a domain can be answered by the joint distribution because every event 

is a sum of sample points 

 
Conditional Probability: 

 
The conditional probability ―P(a|b)‖ is the probability of ―a‖ given that all we know is ―b‖. 

 
Example:  P(cavity|toothache)  =  0.8  means  if  a  patient  have  toothache  and  no  other 

information is yet available, then the probability of patient‘s having the cavity is 0.8. 

 
Definition of conditional probability: 

P(a|b) = P(a^ b)/P(b) if P(b) ≠0 

Product rule gives an alternative formulation: 

P(a^ b) = P(a|b)P(b) = p(b|a)P(a) 

 
Inference using full joint probability distribution: 

 
We use the full joint distribution as the knowledge base from which answers to all questions 

may be derived. The probability of a proposition is equal to the sum of the probabilities of 

the atomic events in which it holds. 

P(a) = ΣP(ei) 

Therefore, given a full joint distribution that specifies the probabilities of all the atomic 

events, one can compute the probability of any proposition.
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Full Joint probability distribution : an example 
 

 
We consider the following domain consisting of three Boolean variables: Toothache, Cavity, 

and Catch (the dentist‘s nasty steel probe catches in my tooth). 
 

 
 

The full joint distribution is the following 2x2x2 table: 

 

 
 
The probability of any proposition can be computed from the probabilities in the table. The 

probabilities in the joint distribution must sum to 1. 

 
Each cell represents an atomic event and these are all the possible atomic events. 

 

 
 

P(cavity or toothache) = 

 
P(cavity, toothache, catch) + P(cavity, toothache, ¬catch) + P(cavity, ¬toothache, catch) + 

P(cavity, ¬toothache, ¬catch) + P(¬cavity, toothache, catch) + P(¬cavity, toothache, ¬catch) 

 
= 0.108+0.012+0.072+0.008+0.016+0.064=0.28 

 
We simply identify those atomic events in which the proposition is true and add up their 

probabilities 

 
Bayes’ Rule (Theorem) : 

 

 
 
Why is the Bayes’ rule is useful in practice? Bayes‘ rule is useful in practice because there 

are many cases where we have good probability estimates for three of the four probabilities 

involved, and therefore can compute the fourth one.
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Useful for assessing diagnostic probability from causal probability: 
 

 
 
 
 

Diagnostic knowledge is often more fragile than causal knowledge. 
 
 

 
Example of Bayes' rule: 

 

 

A doctor knows that the disease meningitis causes the patient tohave a stiff neck 50% of the 

time. The doctor also knows that the probability that a patient has meningitis is 1/50,000, and 

the probability that any patient has a stiff neck is 1/20. 

Find the probability that a patient with a stiff neck has meningitis. 

Here, we are given; 
p(s|m) = 0.5 
p(m) = 1/50000 

p(s) = 1/20 

 
Now using Bayes‘ rule; 

 
P(m|s) = P(s|m)P(m)/P(s) = (0.5*1/50000)/(1/20) = 0.0002 

 
Uses of Bayes' Theorem : 

 
In doing an expert task, such as medical diagnosis, the goal is to determine identifications 
(diseases) given observations (symptoms). Bayes' Theorem provides such a relationship. 

 
P(A | B) = P(B | A) * P(A) / P(B) 

 
Suppose: A = Patient has measles, B = has a rash 

 
Then: P(measles/rash) =          P(rash/measles) * P(measles) / P(rash) 

 
The  desired  diagnostic  relationship  on  the  left  can  be  calculated  based  on  the  known 

statistical quantities on the right. 

 
Bayesian networks: 

 

 

- A data structure to represent the dependencies among variables and to give a concise 

specification of any full joint probability distribution. 

- Also called belief networks or probabilistic network or casual network or knowledge 

map.
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The basic idea is: 

 
  Knowledge in the world is modular -- most events are conditionally independent of 

most other events. 

  Adopt a model that can use a more local representation to allow interactions between 

events that only affect each other. 

  Some events  may only be  unidirectional  others  may be  bidirectional  -- make  a 

distinction between these in model. 

     Events may be causal and thus get chained together in a network. 

 
A Bayesian network is a directed acyclic graph which consists of: 

 
     A set of random variables which makes up the nodes of the network. 

  A set of directed links (arrows) connecting pairs of nodes. If there is an arrow from 

node X to node Y, X is said to be a parent of Y. 

  Each  node  Xi  has  a  conditional  probability  distribution  P(Xi|  Parents(Xi))  that 

quantifies the effect of the parents on the node. 

 
Intuitions: 

     A Bayesian network models our incomplete understanding of the causal relationships 
from an application domain. 

     A node represents some state of affairs or event. 

     A link from X to Y means that X has a direct influence on Y. 

 
Implementation 

 
     A Bayesian Network is a directed acyclic graph: 

o A graph where the directions are links which indicate dependencies that exist 
between nodes. 

o Nodes represent propositions about events or events themselves. 
o Conditional probabilities quantify the strength of dependencies. 

 
Example: 

 
Sample Domain: 

 
You have a burglar alarm installed in your home. It is fairly reliable at detecting a burglary, 

but also responds on occasion to minor earthquakes. You also have two neighbors, John and 

Mary, who have promised to call you at work when they hear the alarm. John always calls 

when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and 

calls then, too. Mary, on the other hand, likes rather loud music and sometimes misses the 

alarm altogether. 
We would like have to estimate the probability of a burglary with given evidence who has or 
has not call. 

 
Variables:Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
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The  probabilities  associated  with  the  nodes  reflect  our  representation  of  the  causal 

relationships. 

 
A Bayesian network provides a complete description of the domain in the sense that one can 

compute the probability of any state of the world (represented as a particular assignment to 

each variable). 

 
Example: What is the probability that the alarm has sounded, but neitherburglary nor an 

earthquake has occurred, and both John and Mary call? 

 
P(j, m, a, ¬b, ¬e) = P(j|a) P(m|a) P(a|, ¬b, ¬e) P(¬b) P(¬e) 

 
= 0.90*0.70*0.001*0.999*0.998 = 0.00062 

 
Consider the following example: 

 

     The probability, that my car won't start. 
     If my car won't start then it is likely that 

o The battery is flat or 
o The staring motor is broken. 

 
In order to decide whether to fix the car myself or send it to the garage I make the following 

decision: 

 
     If the headlights do not work then the battery is likely to be flat so i fix it myself.
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     If the starting motor is defective then send car to garage. 

     If battery and starting motor both gone send car to garage. 

The network to represent this is as follows: 

 
 
Fig.  A simple Bayesian network 

 
Reasoning in Bayesian nets: 

 
 
 
 

(To be added more......... ) 
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