

1

[Unit 5: Machine Learning]

Artificial Intelligence (CSC 355)

Bal Krishna Subedi

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 2

 What is Learning?

“Learning denotes changes in the system that are adaptive in the sense that they enable the

system to do the same task (or tasks drawn from the same population) more effectively the

next time.” --Herbert Simon

"Learning is constructing or modifying representations of what is being experienced." --

Ryszard Michalski

"Learning is making useful changes in our minds." --Marvin Minsky

Types of Learning:

The strategies for learning can be classified according to the amount of inference the

system has to perform on its training data. In increasing order we have

1. Rote learning – the new knowledge is implanted directly with no inference at all, e.g.

simple memorisation of past events, or a knowledge engineer’s direct programming of

rules elicited from a human expert into an expert system.

2. Supervised learning – the system is supplied with a set of training examples consisting

of inputs and corresponding outputs, and is required to discover the relation or mapping

between then, e.g. as a series of rules, or a neural network.

3. Unsupervised learning – the system is supplied with a set of training examples

consisting only of inputs and is required to discover for itself what appropriate outputs

should be, e.g. a Kohonen Network or Self Organizing Map.

Early expert systems relied on rote learning, but for modern AI systems we are generally

interested in the supervised learning of various levels of rules.

The need for Learning:

As with many other types of AI system, it is much more efficient to give the system

enough knowledge to get it started, and then leave it to learn the rest for itself. We may

even end up with a system that learns to be better than a human expert.

The general learning approach is to generate potential improvements, test them, and

discard those which do not work. Naturally, there are many ways we might generate the

potential improvements, and many ways we can test their usefulness. At one extreme, there

are model driven (top-down) generators of potential improvements, guided by an

understanding of how the problem domain works. At the other, there are data driven

(bottom-up) generators, guided by patterns in some set of training data.

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi

3

Machine Learning:

As regards machines, we might say, very broadly, that a machine learns whenever it

changes its structure, program, or data (based on its inputs or in response to external

information) in such a manner that its expected future performance improves. Some of

these changes, such as the addition of a record to a data base, fall comfortably within the

province of other disciplines and are not necessarily better understood for being called

learning. But, for example, when the performance of a speech-recognition machine

improves after hearing several samples of a person's speech, we feel quite justified in that

case saying that the machine has learned.

Machine learning usually refers to the changes in systems that perform tasks associated

with artificial intelligence (AI). Such tasks involve recognition, diagnosis, planning, robot

control, prediction, etc. The changes might be either enhancements to already performing

systems or synthesis of new systems.

Learning through Examples: (A type of Concept learning)

Concept learning also refers to a learning task in which a human or machine learner is

trained to classify objects by being shown a set of example objects along with their class

labels. The learner will simplify what has been observed in an example. This simplified

version of what has been learned will then be applied to future examples. Concept learning

ranges in simplicity and complexity because learning takes place over many areas. When a

concept is more difficult, it will be less likely that the learner will be able to simplify, and

therefore they will be less likely to learn. This learning by example consists of the idea of

version space.

A version space is a hierarchical representation of knowledge that enables you to keep

track of all the useful information supplied by a sequence of learning examples without

remembering any of the examples.

The version space method is a concept learning process accomplished by managing

multiple models within a version space.

Version Space Characteristics

In settings where there is a generality-ordering on hypotheses, it is possible to represent the

version space by two sets of hypotheses: (1) the most specific consistent hypotheses and

(2) the most general consistent hypotheses, where "consistent" indicates agreement with

observed data.

The most specific hypotheses (i.e., the specific boundary SB) are the hypotheses that cover

the observed positive training examples, and as little of the remaining feature space as

possible. These are hypotheses which if reduced any further would exclude a positive

training example, and hence become inconsistent. These minimal hypotheses essentially

constitute a (pessimistic) claim that the true concept is defined just by the positive data

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 4

already observed: Thus, if a novel (never-before-seen) data point is observed, it should be

assumed to be negative. (I.e., if data has not previously been ruled in, then it's ruled out.)

The most general hypotheses (i.e., the general boundary GB) are those which cover the

observed positive training examples, but also cover as much of the remaining feature space

without including any negative training examples. These are hypotheses which if enlarged

any further would include a negative training example, and hence become inconsistent.

Tentative heuristics are represented using version spaces. A version space represents all the

alternative plausible descriptions of a heuristic. A plausible description is one that is

applicable to all known positive examples and no known negative example.

A version space description consists of two complementary trees:

1. One that contains nodes connected to overly general models, and

2. One that contains nodes connected to overly specific models.

Node values/attributes are discrete.

Fundamental Assumptions

1. The data is correct; there are no erroneous instances.

2. A correct description is a conjunction of some of the attributes with values.

Diagrammatical Guidelines

There is a generalization tree and a specialization tree.

Each node is connected to a model.

Nodes in the generalization tree are connected to a model that matches everything in its

subtree.

Nodes in the specialization tree are connected to a model that matches only one thing in its

subtree.

Links between nodes and their models denote

 generalization relations in a generalization tree, and

 specialization relations in a specialization tree.

Diagram of a Version Space

In the diagram below, the specialization tree is colored red, and the generalization tree is

colored green.

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 5

Generalization and Specialization Leads to Version Space Convergence

The key idea in version space learning is that specialization of the general models and

generalization of the specific models may ultimately lead to just one correct model that

matches all observed positive examples and does not match any negative examples.

That is, each time a negative example is used to specialilize the general models, those

specific models that match the negative example are eliminated and each time a positive

example is used to generalize the specific models, those general models that fail to match

the positive example are eliminated. Eventually, the positive and negative examples may

be such that only one general model and one identical specific model survive.

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 6

Candidate Elimination Algorithm:

The version space method handles positive and negative examples symmetrically.

Given:

 A representation language.

 A set of positive and negative examples expressed in that language.

Compute: a concept description that is consistent with all the positive examples and none

of the negative examples.

Method:

 Initialize G, the set of maximally general hypotheses, to contain one element: the

null description (all features are variables).

 Initialize S, the set of maximally specific hypotheses, to contain one element: the

first positive example.

 Accept a new training example.

o If the example is positive:

1. Generalize all the specific models to match the positive example, but

ensure the following:

 The new specific models involve minimal changes.

 Each new specific model is a specialization of some general

model.

 No new specific model is a generalization of some other

specific model.

2. Prune away all the general models that fail to match the positive

example.

o If the example is negative:

1. Specialize all general models to prevent match with the negative

example, but ensure the following:

 The new general models involve minimal changes.

 Each new general model is a generalization of some specific

model.

 No new general model is a specialization of some other

general model.

2. Prune away all the specific models that match the negative example.

o If S and G are both singleton sets, then:

 if they are identical, output their value and halt.

 if they are different, the training cases were inconsistent. Output this

result and halt.

 else continue accepting new training examples.

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 7

The algorithm stops when:

1. It runs out of data.

2. The number of hypotheses remaining is:

o 0 - no consistent description for the data in the language.

o 1 - answer (version space converges).

o 2
+
 - all descriptions in the language are implicitly included.

Problem 1:

Learning the concept of "Japanese Economy Car"

Features: (Country of Origin, Manufacturer, Color, Decade, Type)

Origin Manufacturer Color Decade Type Example Type

Japan Honda Blue 1980 Economy Positive

Japan Toyota Green 1970 Sports Negative

Japan Toyota Blue 1990 Economy Positive

USA Chrysler Red 1980 Economy Negative

Japan Honda White 1980 Economy Positive

Solution:

1. Positive Example: (Japan, Honda, Blue, 1980, Economy)

Initialize G to a singleton

set that includes everything.

Initialize S to a singleton

set that includes the first

positive example.

G = { (?, ?, ?, ?, ?) }

S = { (Japan, Honda, Blue, 1980,

Economy) }

These models represent the most general and the most specific heuristics one might learn.

The actual heuristic to be learned, "Japanese Economy Car", probably lies between them

somewhere within the version space.

2. Negative Example: (Japan, Toyota, Green, 1970, Sports)

Specialize G to exclude the negative example.

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 8

G =

{ (?, Honda, ?, ?, ?),

(?, ?, Blue, ?, ?),

(?, ?, ?, 1980, ?),

(?, ?, ?, ?, Economy) }

S = { (Japan, Honda, Blue, 1980, Economy) }

Refinement occurs by generalizing S or specializing G, until the heuristic hopefully

converges to one that works well.

3. Positive Example: (Japan, Toyota, Blue, 1990, Economy)

Prune G to exclude descriptions inconsistent with the positive example.

Generalize S to include the positive example.

G =
{ (?, ?, Blue, ?, ?),

(?, ?, ?, ?, Economy) }

S = { (Japan, ?, Blue, ?, Economy) }

4. Negative Example: (USA, Chrysler, Red, 1980, Economy)

Specialize G to exclude the negative example (but stay consistent with S)

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 9

G =
{ (?, ?, Blue, ?, ?),

(Japan, ?, ?, ?, Economy) }

S = { (Japan, ?, Blue, ?, Economy) }

5. Positive Example: (Japan, Honda, White, 1980, Economy)

Prune G to exclude descriptions inconsistent with positive example.

Generalize S to include positive example.

G = { (Japan, ?, ?, ?, Economy) }

S = { (Japan, ?, ?, ?, Economy) }

G and S are singleton sets and S = G.

Converged.

No more data, so algorithm stops.

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 10

Explanation Based Machine Learning:

Explanation-based learning (EBL) is a form of machine learning that exploits a very

strong, or even perfect, domain theory to make generalizations or form concepts from

training examples. This is a type of analytic learning. The advantage of explanation-based

learning is that, as a deductive mechanism, it requires only a single training example (

inductive learning methods often require many training examples)

An Explanation-based Learning (EBL) system accepts an example (i.e. a training

example) and explains what it learns from the example. The EBL system takes only the

relevant aspects of the training.

EBL accepts four inputs:

A training example : what the learning sees in the world. (specific facts that rule out some

possible hypotheses)

A goal concept : a high level description of what the program is supposed to learn. (the set

of all possible conclusions)

A operational criterion : a description of which concepts are usable. (criteria for

determining which features in the domain are efficiently recognizable, e.g. which features

are directly detectable using sensors)

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 11

A domain theory : a set of rules that describe relationships between objects and actions in

a domain. (axioms about a domain of interest)

From this EBL computes a generalization of the training example that is sufficient not only

to describe the goal concept but also satisfies the operational criterion.

This has two steps:

Explanation: the domain theory is used to prune away all unimportant aspects of the

training example with respect to the goal concept.

Generalisation: the explanation is generalized as far possible while still describing the

goal concept

An example of EBL using a perfect domain theory is a program that learns to play chess by

being shown examples. A specific chess position that contains an important feature, say,

"Forced loss of black queen in two moves," includes many irrelevant features, such as the

specific scattering of pawns on the board. EBL can take a single training example and

determine what the relevant features are in order to form a generalization.

Learning by Analogy:

Reasoning by analogy generally involves abstracting details from a a particular set of

problems and resolving structural similarities between previously distinct problems.

Analogical reasoning refers to this process of recognition and then applying the solution

from the known problem to the new problem. Such a technique is often identified as case-

based reasoning. Analogical learning generally involves developing a set of mappings

between features of two instances.

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 12

The question in above figure represents some known aspects of a new case, which has

unknown aspects to be determined. In deduction, the known aspects are compared (by a

version of structure mapping called unification) with the premises of some implication.

Then the unknown aspects, which answer the question, are derived from the conclusion of

the implication. In analogy, the known aspects of the new case are compared with the

corresponding aspects of the older cases. The case that gives the best match may be

assumed as the best source of evidence for estimating the unknown aspects of the new

case. The other cases show alternative possibilities for those unknown aspects; the closer

the agreement among the alternatives, the stronger the evidence for the conclusion.

1. Retrieve: Given a target problem, retrieve cases from memory that are relevant to

solving it. A case consists of a problem, its solution, and, typically, annotations

about how the solution was derived. For example, suppose Fred wants to prepare

blueberry pancakes. Being a novice cook, the most relevant experience he can

recall is one in which he successfully made plain pancakes. The procedure he

followed for making the plain pancakes, together with justifications for decisions

made along the way, constitutes Fred's retrieved case.

2. Reuse: Map the solution from the previous case to the target problem. This may

involve adapting the solution as needed to fit the new situation. In the pancake

example, Fred must adapt his retrieved solution to include the addition of

blueberries.

3. Revise: Having mapped the previous solution to the target situation, test the new

solution in the real world (or a simulation) and, if necessary, revise. Suppose Fred

adapted his pancake solution by adding blueberries to the batter. After mixing, he

discovers that the batter has turned blue – an undesired effect. This suggests the

following revision: delay the addition of blueberries until after the batter has been

ladled into the pan.

4. Retain: After the solution has been successfully adapted to the target problem,

store the resulting experience as a new case in memory. Fred, accordingly, records

his newfound procedure for making blueberry pancakes, thereby enriching his set

of stored experiences, and better preparing him for future pancake-making

demands.

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 13

Transformational Analogy:

Suppose you are asked to prove a theorem in plane geometry. You might look for a

previous theorem that is very similar and copy its proof, making substitutions when

necessary. The idea is to transform a solution to a previous problem in to solution for the

current problem. The following figure shows this process,

Fig: Transformational Analogy

Derivational Analogy:
Notice that transformational analogy does not look at how the old problem was solved, it

only looks at the final solution. Often the twists and turns involved in solving an old

problem are relevant to solving a new problem. The detailed history of problem solving

episode is called derivation, Analogical reasoning that takes these histories into account is

called derivational analogy.

 New Derivation Old derivation

Fig: Derivational Analogy

Refer Book:- E. Rich, K. Knight, S. B. Nair, Tata MacGraw Hill (Pages 371-

372)

New

 Problem

Previously

solved problem

Solution to

New Problem

Solution to Old

Solution

New

 Problem

Previously

solved problem

Solution to

New Problem

Solution to Old

Solution

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 14

Learning by Simulating Evolution:

Refer Book:- P. H. Winston, Artificial Intelligence, Addison Wesley. (Around page 220)

Learning by Training Perceptron:

Below is an example of a learning algorithm for a single-layer (no hidden-layer)

perceptron. For multilayer perceptrons, more complicated algorithms such as

backpropagation must be used. Or, methods such as the delta rule can be used if the

function is non-linear and differentiable, although the one below will work as well.

The learning algorithm we demonstrate is the same across all the output neurons, therefore

everything that follows is applied to a single neuron in isolation. We first define some

variables:

 x(j) denotes the j-th item in the n-dimensional input vector

 w(j) denotes the j-th item in the weight vector

 f(x) denotes the output from the neuron when presented with input x

 α is a constant where (learning rate)

Assume for the convenience that the bias term b is zero. An extra dimension n + 1 can be

added to the input vectors x with x(n + 1) = 1, in which case w(n + 1) replaces the bias

term.

the appropriate weights are applied to the inputs, and the resulting weighted sum passed to

a function which produces the output y

Let be training set of m training examples, where xi

is the input vector to the perceptron and yi is the desired output value of the perceptron for

that input vector.

Downloded from: CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Bal Krishna Subedi 15

Learning algorithm steps:

1. Initialize weights and threshold.

 Set wi(t), (1 ≤ i ≤ m) to be the weight i at time t, and ø to be the threshold value in

the output node.

 Set w(0) to be -ø,the bias, and x(0) to be always 1.

 Set wi(1) to small random values, thus initialising the weights and threshold.

2. Present input and desired output

 Present input x0 = 1 and x1,x2,...,xm and desired output d(t)

3. Calculate the actual output

 y(t) = fh[w0(t) + w1(t)x1(t) + w2(t)x2(t) + + wm(t)xm(t)]

4. Adapts weights

 wi(t + 1) = wi(t) + α[d(t) − y(t)]xi(t) , for .

Steps 3 and 4 are repeated until the iteration error is less than a user-specified error

threshold or a predetermined number of iterations have been completed.

Downloded from: CSITauthority.blogspot.com

